Ремонт и техническое обслуживание автомобилей




Диагностика электрооборудования автомобилей




Общие сведения о диагностировании электрооборудования

Электрооборудование и электронные системы автоматического управления являются наиболее важным элементом обеспечения безопасности движения автотранспортных средств, экологической безопасности и повышения производительности труда водителей.
Надежность работы изделий электрооборудования во многом определяют аварийность в процессе дорожного движения автомобиля, его экономичность и динамику, а также экологическую безопасность для окружающей среды.

Требования к техническому состоянию транспортных средств регламентируются в нашей стране стандартами ГОСТ 25478-91 «Автотранспортные средства. Требования к техническому состоянию по условиям безопасности движения», ГОСТ Р41.13-99 «Единообразные предписания, касающиеся официального утверждения транспортных средств в отношении тормозов», а также ОСТ 37.001.054-86, ГОСТ 17.2.2.03-87 и ГОСТ 21393-75, регламентирующие экологические требования на основе и в соответствии с международными стандартами по этому вопросу. С 2012 года Европейский Союз ввел ужесточенные требования по экологии в виде норматива «Евро-5».

Без применения электронных систем управления бензиновыми, дизельными и газовыми двигателями, систем зажигания высокой энергии искрового разряда, комплексных микропроцессорных систем управления двигателями внутреннего сгорания и др. обеспечить эти требования практически невозможно.
Для обеспечения технической эксплуатации таких сложных электронных систем они должны иметь встроенные диагностические разъемы и диагностические интерфейсы, соответствующие международным стандартам ISO 9141, OBD-II и EOBD.

диагностирование электрооборудования автомобиля

В процессе эксплуатации автотранспорта в экстремальных природно-климатических условиях изделия и системы электрооборудования, особенно при низких температурах, увеличивается количество отказов, возрастает трудоемкость их устранения.
Это связано со следующими факторами и явлениями:

  • возрастание момента сопротивления прокручиванию вала двигателя внутреннего сгорания в период его запуска и увеличение времени прогрева в режиме холостого хода;
  • ухудшение энергетических возможностей аккумуляторной батареи, поскольку уменьшается ее емкость и снижается эффективность процесса заряда от генераторной установки, происходит более глубокий разряд, увеличивается число включенных потребителей электроэнергии, сокращается время подзарядки от генераторной установки из-за короткой продолжительности светового дня, снижаются скорости движения, уменьшается зарядный ток генератора;
  • увеличивается пробивное напряжение на свечах зажигания и возрастает электрическая нагрузка на высоковольтные детали системы зажигания, что негативно сказывается на безотказности их работы и т. д.

Использование внешних источников электроэнергии для облегчения пуска холодного двигателя может привести к пробоям электронных изделий и их комплектующих.

Эксплуатация автомобилей в горных условиях и при высоких температурах окружающей среды может приводить к увеличению отказов изделий и систем электрооборудовании, особенно при нарушениях инструкций по эксплуатации и при неквалифицированном техническом обслуживании. Повышенная влажность воздуха в горных условиях (в субтропиках) вызывает ускоренную коррозию клемм и соединений электропроводки, а в пустынных зонах из-за нехватки влаги резко увеличивается температура и ухудшаются условия охлаждения.

Можно сделать вывод, что в различных условиях эксплуатации показатели надежности изделий или систем электрооборудования будут отличаться при одинаковом пробеге автомобиля или времени его работы. Это определило не только применяемые в изделиях комплектующие и материалы, но и конструктивное, климатическое исполнение. Например, изготовленные для умеренного климата изделия обозначают «У», для холодного климата – «ХЛ», для тропиков – «Т» и для всех климатических зон – «О». При этом для каждого климатического исполнения применяют разные материалы, покрытия и методы технического обслуживания в процессе эксплуатации.

К причинам и последствиям изменения технического состояния в процессе эксплуатации можно отнести: нагрузку элементов изделия, взаимное перемещение элементов, воздействие тепловой и электрической энергии, воздействие химически активных компонентов, воздействие внешней среды, а также воздействия со стороны работников технической службы и водителя и т. д.

Для определения технического состояния изделий и систем электрооборудования применяют прямой и косвенный методы измерения текущих значений конструктивных параметров (размеры, зазоры, электрические характеристики, угловые и линейные перемещения и т. п.).

Прямой метод обладает преимуществами в точности, наглядности, достоверности, применении достаточно простого инструмента и простой технологии измерений. К недостаткам этого метода следует отнести необходимость частичной или полной разборки изделия, нарушение приработки деталей, невозможность комплексного контроля работы сложных систем.

Диагностический метод позволяет: не разбирать изделия или системы, производить контроль с меньшими трудозатратами, оперативно получать результат контроля и контролировать сложнейшие электронные системы управления агрегатами транспортного средства.
К недостаткам диагностического метода относятся: сложность и высокая стоимость диагностического оборудования, высокие квалификационные требования к персоналу (операторам), занятым диагностикой элементов конструкции транспортных средств и метрологическим контролем самого оборудования.




Изменение технического состояния и параметров изделий и систем электрооборудования можно зафиксировать несколькими диагностическими параметрами, из которых необходимо выбрать наиболее эффективный параметр. Эффективность параметра зависит от его однозначности (монотонности кривой изменения), стабильности, чувствительности и информативности.
Под информативностью подразумевается свойство параметра однозначно определять исправность или отказ изделия.

Различают два способа диагностирования.
Первый характеризуется тем, что в процессе диагностирования на исследуемый объект производят определенные механические, электрические или другие воздействия, при этом объект может находиться как в исправном, так и в неисправном состоянии. Далее с помощью датчиков фиксируется реакция объекта на воздействие в виде диагностического сигнала и по характеру этого сигнала делают вывод о состоянии объекта.

Второй способ заключается в том, что в процессе диагностирования исследуемый объект выводят на заданный, тестовый режим работы и с помощью датчиков от него анализируют получаемую информацию, сравнивая ее с эталоном или образцом, введенным в память процессора или в таблицу, отображая полученные данные на дисплее и/или в виде распечатки.

На практике прямой и диагностический методы взаимодействуют и дополняют друг друга. Предпочтение отдается методу, имеющему наименьшую продолжительность процедуры и оперативно позволяющему выявить и устранить отказ изделия, системы или их элемента.

Для обеспечения выполнения международных Правил и отечественных стандартов на борту автомобилей появились системы встроенной бортовой диагностики первого и второго поколения.

К особенностям встроенных систем бортовой диагностики относят: выполнение их в виде сигнальной аппаратуры – световых индикаторов на электролампах или светодиодах. Микропроцессорная техника и мультиплексирование информации в бортовых сетях автомобилей позволили существенно облегчить выполнение законодательных норм по токсичности отработавших газов тепловых двигателей внутреннего сгорания и обеспечить контроль гибридных силовых приводов автомобилей.

***

Системная структура электрооборудования автомобилей