Ремонт и техническое обслуживание автомобилей




Датчики ускорения (акселерометры)




В некоторых автомобильных ЭСАУ для фиксации величины ускорений требуются соответствующие датчики, которые обычно называют акселерометрами. Акселерометры используются в системах безопасности, навигационных системах, активной подвеске.
Пьезоэлектрические и тензорезистивные акселерометры создаются на основе твердотельных материалов, которые обладают электрической чувствительностью к механическим воздействиям.

***

Пьезоэлектрические акселерометры

Такой тип датчиков ускорения широко используется для вибрационных измерений, благодаря точности данных, надежности и простые конструкции (рис. 1, а). Чувствительность автомобильных акселерометров составляет около 20 мВ/g, они имеют малые размеры и выпускаются в интегральном исполнении с термокомпенсацией. Их погрешность составляет 0,5% при температурах -40...+ 110 ˚С.

датчики ускорения и акселерометры

Рис. 1.
а) Принципиальная конструкция акселерометра;
б) Высокочастотный сигнал пьезодатчика;
в) Схема усилителя-формирователя для обработки сигнала пьезоэлектрического акселерометра

При деформации (сжатии) пьезокристалла на его гранях появляется электрический сигнал, пропорциональный ускорению. Рабочий диапазон частоты 5...100000 Гц. Для обработки сигнала от подобных пьезоэлектрических датчиков используется электронный усилитель-формирователь (рис. 1, в). Акселерометры подушек безопасности автомобиля

Эти акселерометры являются механическими датчиками инерционного типа. Такие датчики обычно располагаются не дальше 40 см от предполагаемого места удара. Обычно используются 3...5 датчиков.

Конкретное исполнение инерционных датчиков может отличаться у разных производителей системы безопасности, но все они работают по одному и тому же принципу.
В обычных условиях движения автомобиля выходные контакты акселерометра разомкнуты, они замыкаются, когда датчик испытывает отрицательное ускорение в диапазоне 15...20 g, что соответствует наезду автомобиля на твердое препятствие со скоростью 15...30 км/ч. Существует несколько конструкций акселерометров, применяемых в системах безопасности.

акселерометры с постоянным магнитом

Рис. 2. Акселерометр с постоянным магнитом

Самыми распространенными механическими акселерометрами являются акселерометры с постоянным магнитом. Эта механическая конструкция (рис. 2) состоит из чувствительной массы (металлического шара), которая прочно удерживается в задней части небольшого цилиндра мощным постоянным магнитом.
Выходные электрические контакты датчика всегда разомкнуты, и при столкновении сила инерции металлического шара преодолевает притяжение магнита, шар двигается по цилиндру и замыкает контакты, сигнал поступает в ЭБУ.

В таких датчиках различные конструктивные параметры его элементов, например, масса шарика, сила притяжения магнита, демпфирование и др., увязываются с динамикой конкретного автомобиля при ударе. При этом учитывается вес автомобиля, конструкция корпуса, места расположения датчиков.

***




Специальные акселерометры

В последние годы в машиностроении, в т. ч. - в автомобилестроении, широко применяются интегральные акселерометры на основе полупроводниковых или пьезоэлектрических тензорезисторов, имеющие малые размеры, высокую надежность, программируемость, Такие интегральные датчики располагаются как можно ближе к центру салона.

Их чувствительность к ударному ускорению выше, чем у механических, из-за амортизации корпуса. Используется один датчик для фронтального удара с диапазоном ±50 g.
Могут применяться датчики боковых ударов, пьезорезистивные или емкостные с погрешностью менее 5% и частотным диапазоном 0...750 Гц.
Акселерометры используются также в активной подвеске для определения изменения нагрузки на колеса, их рабочий диапазон ±2 g, погрешность менее 5%, диапазон частот 0...10 Гц.

В системах стабилизации движения автомобиля использовались акселерометры (рис. 3) для определения поперечных значений ускорения.
Подобные датчики также используются в системах полного привода с подключаемой муфтой в качестве датчиков продольного ускорения автомобиля. Преобразователем является датчик Холла 4, выходное напряжение которого зависит от величины отклонения чувствительного элемента – постоянного магнита 3, подвешенного на пруженной пластине 2 под действием ускорения.
Корпус 1 датчика выполняет роль магнитного демпфера.

датчики поперечного и продольного ускорения автомобиля

Рис. 3. Датчик поперечного (продольного) ускорения автомобиля

***

Емкостные акселерометры

Емкостной датчик поперечного ускорения (рис. 4) представляет собой несколько последовательно соединенных конденсаторных пластин.
В корпусе 1 на подвеске 4 установлена подвижная конденсаторная пластина 3 с сейсмической массой (грузом), перемещающаяся при воздействии поперечных ускорений а.
Еще две конденсаторные пластины 2 неподвижны и установлены так, что образуется два последовательно соединенных конденсатора K1 и K2.
С помощью контактных площадок 5 датчик подключается к ЭБУ.

емкостной датчик поперечного ускорения

Рис. 4. Ёмкостной датчик поперечного ускорения:
а) устройство;
б) электрическая схема; 1 - корпус; 2 - неподвижная пластина; 3 - подвижная пластина с сейсмической массой; 4 - подвеска; 5 - контактная площадка

При отсутствии ускорения измеренные емкости С1 и С2 обоих конденсаторов равны по величине.
При возникновении поперечного ускорения массивная подвижная пластина под действием силы инерции смещается относительно неподвижных пластин встречно ускорению. При этом изменяются расстояния между пластинами и емкость каждого из конденсаторов, например, в конденсаторе K1 расстояние между пластинами увеличивается, емкость С1 уменьшается; в конденсаторе K22 расстояние между пластинами уменьшается, емкость С2 увеличивается.

***

Специальные датчики автомобильных систем



Главная страница


Специальности

Учебные дисциплины

Олимпиады и тесты