Основы гидравлики





Гидравлические машины



Классификация гидравлических машин

Гидравлические машины - устройства для преобразования механической энергии в энергию потока и наоборот - для преобразования энергии движущейся жидкости в механическую энергию.
По функциональному назначению гидравлические машины подразделяют на две основные группы:

  • насосы;
  • гидравлические двигатели.

***

Насосы

Насосы являются одной из самых распространенных разновидностей машин, применяемых практически во всех отраслях машиностроения, строительства, промышленности и сельского хозяйства.
гидравлические машины Их применяют в гидромеханических конструкциях многих механизмов и агрегатов, в трубопроводах разного назначения (нефтепроводы, газопроводы, транспортные трубопроводы и т. п.), в системах водоснабжения, отопления, охлаждения, вентиляции, в котельных установках, бытовой технике и т. д.

Насосы (как и гидродвигатели) применяют в гидропередачах, где основным элементом является гидравлический привод, назначение которого состоит в передаче энергии жидкости от насоса к исполнительному рабочему органу (гидромотору, гидроцилиндру и т. п.). Несколько иное назначение у насосов, применяемых для транспортировки жидкостей и газов (иногда - помещенных в жидкую или газообразную среду твердых объектов) по трубопроводам - здесь насосы служат для сообщения энергии движения транспортируемому веществу.

Насос преобразует механическую энергию приводного двигателя (электрического, теплового двигателя, ручного привода и т. п.) в энергию потока рабочей жидкости, т. е. насос является источником питания гидравлического привода или гидросистемы.

Согласно ГОСТ 17398-72 «Насосы. Термины и определения» по принципу действия и по виду сообщаемой жидкости энергии насосы подразделяют на две основные группы:

  • насосы динамические;
  • насосы объемные.

Динамические насосы преобразуют механическую энергию приводного электродвигателя преимущественно в кинетическую энергию потока рабочей жидкости за счет увеличения ее скорости.
К динамическим относят насосы, перемещающие жидкость посредством увеличивающего ее кинетическую энергию силового воздействия (лопатки и лопасти рабочего колеса, внешнее силовое поле, внешний поток, обладающий большей кинетической энергией и т. п.).
Характерная особенность динамических насосов - перемещающаяся в них жидкость имеет постоянное сообщение с входным и выходным патрубками, что конструктивно отличает их от насосов второй группы - объемных.

К динамическим относятся лопастные насосы, электромагнитные (использующие магнитное поле для ускорения потока жидкости), а также насосы, использующие силы трения и инерции (струйные, вихревые, лабиринтные, шнековые, червячные и т. п.).

Особую группу широко распространенных динамических насосов составляют насосы лопастные, передающие энергию жидкости посредством вращающегося рабочего органа - лопастного колеса.
Передача энергии в таких насосах осуществляется при динамическом взаимодействии лопастей колеса с обтекающей их жидкостью.

К лопастным относятся насосы центробежные, осевые и диагональные.
Центробежными называют лопастные насосы с движением жидкости через рабочее колесо от центра к периферии, осевыми - лопастные насосы с движением жидкости через рабочее колесо вдоль его оси.
Примером осевого лопастного насоса может послужить водометный движитель судна, винт которого является рабочим колесом.

***



Объемные насосы предназначены для преобразования механической энергии приводного электродвигателя преимущественно в потенциальную энергию потока рабочей жидкости за счет увеличения ее давления.
К объемным относят насосы, принцип работы которых основан на увеличении внешнего давления на замкнутый объем жидкости со стороны ограничивающих замкнутый объем поверхностей, и периодическим вытеснением жидкости из замкнутого объема в выходной патрубок (напорную магистраль).

объемные насосы

Увеличение давления осуществляется за счет уменьшения замкнутого объема по пути переноса жидкости от входной (питающей) магистрали к напорной магистрали. При этом замкнутый объем попеременно сообщается то с входом (питающей магистралью), то с выходом (напорной магистралью) насоса.

Примеры наиболее распространенных конструкций объемных насосов: поршневые, плунжерные, диафрагменные, роторные и шестеренные.
К объемным насосам также относятся некоторые специальные устройства, служащие для подъема и перемещения жидкостей:

  • гидравлические тараны, работа которых основана на принципе использования давления, получающегося при гидравлическом ударе;
  • эрлифты - устройства для подъема жидкостей в скважинах посредством нагнетания воздуха в скважины и создания разности объемных масс в столбе воздухонасыщенной поднимаемой жидкости и жидкости, окружающей этот воздухонасыщенный столб.

Применение насосов для хозяйственных нужд человека известно с древних времен. Первые конструкции этих машин использовали мускульный (ручной или с использованием животных) привод и предназначались для водозабора из скважин, водоемов и т. п. В настоящее время разработаны сотни разнообразных конструкций насосов, способных удовлетворить самые разнообразные потребности в машиностроении, медицине, технике, строительстве и других областях человеческой деятельности.

По создаваемому напору различают низконапорные (до 20 м), средненапорные (20..60 м) и высоконапорные (свыше 60 м) насосы.
Кроме того, насосы классифицируют по мощности и подаче (микронасосы, мелкие, малые, средние, крупные), по быстроходности (тихоходные, нормальные, быстроходные), по конструктивным и некоторым другим параметрам.

***

Гидравлические двигатели

Гидравлический двигатель преобразует энергию потока рабочей жидкости, получаемой от насоса, в механическую энергию выходного звена (например, штока цилиндра или вала гидравлического мотора), которые непосредственно или через механическую передачу приводят в действие рабочий орган машины.
Таким образом, двигатель является потребителем энергии жидкости в гидравлическом приводе.

Гидравлические двигатели, как правило, имеют "конструктивных близнецов" среди насосов, т. е. большая часть известных конструкций гидравлических насосов может быть использована в качестве гидродвигателя. Это означает, что практически любой насос может выполнять две функции - передавать энергию жидкости от механических устройств, или отбирать ее у движущейся жидкости, передавая механическим устройствам.
По этой причине гидродвигатели, как и гидронасосы, можно классифицировать на две основные группы - динамические (крыльчатки, турбины и т. п.) и объемные (по аналогу с объемными насосами).
Несколько особняком стоят объемные гидравлические двигатели - гидроцилиндры, которые, впрочем, тоже можно использовать и в качестве насосов.

***

Основными рабочими параметрами, характеризующими гидравлические машины и режимы их работы, являются напор (или давление), подача (для насоса) или расход (для гидродвигателя), мощность (потребная и полезная), а также коэффициент полезного действия.

***

Объемные насосы