Основы гидравлики





Основы гидродинамики



Гидродинамикой называют раздел гидравлики, в котором изучается движение жидкости, обусловленное действием приложенных к ней внешних сил.

Состояние реальной движущейся жидкости в каждой ее точке характеризуется не только плотностью и вязкостью, но и скоростью частиц жидкости, а также гидродинамическим давлением.

Под частицей в гидродинамике понимают условно выделенный объем жидкости, который настолько мал, что можно пренебречь изменением его формы при движении.

гидродинамика - наука о потоке жидкости

При изучении законов движения реальной жидкости необходимо учитывать ее вязкость, что усложняет решение задач гидродинамики, поэтому рассмотрим вначале уравнения движения идеальной жидкости, а затем внесем в них поправки, учитывающие свойства реальной жидкости.

Основным объектом изучения гидродинамики является поток жидкости, под которым понимают движение массы жидкости, ограниченной полностью или частично какой-либо поверхностью (поверхностями). Ограничивающая поверхность может быть твердой (стенки труб, берега и дно рек, каналов и т. д.), жидкой (граница двух жидкостей с разными физическими свойствами) и газообразной (например, граница между поверхностью жидкости и атмосферой и т. п.).

Движение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным). Установившимся называют движение, при котором давление и скорость жидкости в любой точке занятого ею пространства с течением времени не изменяются. При неустановившемся движении в каждой точке пространства, занятом жидкостью, скорость и давление изменяются с течением времени.

Примером установившегося движения может послужить истечение жидкости из сосуда с поддерживаемым постоянно уровнем через коническую трубку (см. рис. 1). Скорость движения жидкости в разных сечениях трубки будет различаться, но в каждом из сечений эта скорость будет постоянной, не изменяющейся во времени.
Если же в подобном опыте уровень жидкости в сосуде не поддерживать постоянным, то движение жидкости по той же конической трубке будет иметь нестационарный (неустановившийся) характер, поскольку в сечениях трубки скорость не будет постоянной во времени (будет уменьшаться с понижением уровня жидкости в сосуде).

установившееся движение жидкости

Движение жидкости может быть равномерным и неравномерным.
Равномерным называют движение, при котором скорости в сходственных точках двух смежных сечений потока жидкости равны между собой. В противном случае движение неравномерное.
Если обратиться к предыдущему опыту с сосудом и конической трубкой, то можно заметить, что истечение жидкости через коническую трубку в обоих случаях (с постоянным и переменным уровнем в сосуде) равномерным не будет. Коническая трубка имеет непостоянное сечение, и скорость жидкости при движении по ней будет непрерывно изменяться.
Если заменить в этом опыте коническую трубку цилиндрической, то движение жидкости в ней будет равномерным.

Различают напорное и безнапорное движение жидкости. Если стенки полностью ограничивают поток жидкости, то движение жидкости называют напорным (например, перемещение жидкости по полностью заполненным трубам).
Если же ограничение потока стенками частичное (например, движение воды в реках, каналах), то такое движение называют безнапорным.
Напорные потоки иногда называют сплошь заполненными, а безнапорные – открытыми руслами.

Для того чтобы движение жидкости можно было считать полностью определенным, необходимо знать распределение величины и направления скорости частиц в потоке, а также зависимость этого распределения от времени.

Направление скоростей в потоке характеризуется линией тока.
Линия тока – воображаемая кривая, проведенная внутри потока жидкости таким образом, что скорости всех частиц, находящихся на ней в данный момент времени, касательны к этой кривой (см. рисунок).
Линия тока отличается от траектории тем, что последняя отражает путь какой-либо одной частицы за некоторый промежуток времени, тогда как линия тока характеризует направление движения совокупности частиц жидкости в данный момент времени.
При установившемся движении линии тока совпадает с траекториями движения частиц жидкости.

***



Если в поперечном сечении потока жидкости выделить элементарную площадку ΔS и провести через точки ее контура линии тока, то получится так называемая трубка тока (см. рисунок). Жидкость, находящаяся внутри трубки тока, образует элементарную струйку. Поток жидкости можно рассматривать как совокупность всех движущихся элементарных струек.

линия тока и трубка тока жидкости

Живым сечением элементарной струйки называют поверхность, нормальную (перпендикулярную) к вектору скорости, т. е. к линии тока. Скорость движения частиц жидкости во всех точках каждого живого сечения элементарной струйки можно считать одинаковой ввиду незначительных размеров сечения, а сами сечения по той же причине можно считать плоскими.

Живое сечение потока определяют как сумму живых сечений элементарных струек, из которых он состоит. Следовательно, живое сечение потока представляет собой поверхность, во всех точках которой скорости частиц жидкости нормальны к элементам этой поверхности.
Следует отметить, что живое сечение может иметь форму плоской поверхности лишь для идеальной жидкости, в общем случае (для реальных жидкостей) оно имеет форму сложной криволинейной поверхности, т. е. скорости частиц потока жидкости распределены в любом его живом сечении неравномерно.

Линию соприкосновения жидкости с твердыми стенками, ограничивающими поток в данном живом сечении, называют смоченным периметром (см. рисунок). Отношение площади живого сечения потока S к длине смоченного периметра χ называют гидравлическим радиусом потока жидкости:

R = S/χ.

Для труб круглого сечения, заполненных жидкостью, гидравлический радиус определяют по формуле:

R = d/4.

определение гидравлического радиуса труб разного сечения

Аналогично определяют гидравлический радиус в трубах других сечений:

для эллиптических труб с осями a и b:

R = ab/[2/3(a + b) - √ab];

для трубы в виде равностороннего треугольника со стороной a:

R = a/4√3;

для трубы в виде прямоугольника со сторонами a и b:

R = ab/2(a + b);

для квадратной трубы со стороной a:

R = a/4.

Объем или масса жидкости, протекающей через живое сечение потока в единицу времени, называют объемным (Q) или массовым (m) расходом жидкости.
Объемный расход жидкости Q измеряется в м3 или л/с, массовый расход m – в кг/с. Объемный расход связан с массовым расходом зависимостью Q = m/ρ.

Плотность жидкости может быть различной в разных участках потока, и даже в разных точках живого сечения, например, из-за неравномерности распределения температуры. В общем случае непостоянной является и скорость в различных точках живого сечения потока: в центре потока она обычно больше, а у стенок, ограничивающих поток, - меньше (вплоть до полной остановки частиц).
В связи с этим вводят понятие средней скорости потока, которую определяют, как отношение расхода к площади живого сечения:

v = Q/S,   откуда   Q = vS.

***

Режимы движения жидкости и число Рейнольдса