Основы гидравлики





Гидравлические сопротивления и их расчет



Виды гидравлических сопротивлений

При движении жидкости в трубе между нею и стенками трубы возникают дополнительные силы сопротивлении, в результате чего частицы жидкости, прилегающие к поверхности трубы, тормозятся. Это торможение благодаря вязкости жидкости передается следующим слоям, отстоящим далее от поверхности трубы, причем скорость движения частиц по мере удаления их от оси трубы постепенно уменьшается.
расчет гидравлических сопротивлений Равнодействующая сил сопротивления Т направлена в сторону, противоположную движению жидкости, и параллельна направлению движения. Это и есть силы гидравлического трения (сопротивления гидравлического трения).

Для преодоления сопротивления трения и поддержания равномерного поступательного движения жидкости необходимо, чтобы на жидкость действовала сила, направленная в сторону ее движения и равная силе сопротивления, т. е. необходимо затрачивать энергию. Энергию или напор, необходимый для преодоления сил сопротивления, называют потерянной энергией или потерянным напором.
Потери напора, затрачиваемые на преодоление сопротивления трения, носят название потерь напора на трение или потерь напора по длине потока (линейные потери напора) и обозначаются обычно hтр.

Однако трение является не единственной возможной причиной, вызывающей потери напора. Резкое изменение сечения также оказывает сопротивление движению жидкости (так называемое сопротивление формы) и вызывает потери энергии. Существуют и другие причины, вызывающие потери напора, например внезапное изменение направления движения жидкости.
Потери напора, вызываемые резким изменением конфигурации границ потока (затрачиваемые на преодоление сопротивления формы), называют местными потерями напора или потерями напора на местные сопротивления и обозначаются через hм.

Таким образом, потери напора при движении жидкости складываются из потерь напора на трение и потерь на местные сопротивления, т. е.:

hS = hтр + hм.

***

Потери напора при равномерном движении жидкости в трубах

Найдем общее выражение для потерь напора на трение при равномерном движении жидкости в трубах, справедливое как для ламинарного, так и для турбулентного режимов.

При равномерном движении величина средней скорости и распределение скоростей по сечению остаются неизменными по всей длине трубопровода. Поэтому равномерное движение возможно лишь в трубах постоянного сечения S, так как в противном случае будет изменяться средняя скорость в соответствии с уравнением:

v = Q/S = const.

Равномерное движение имеет место в прямых трубах или в трубах с очень большим радиусом кривизны R (прямолинейное движение), так как в противном случае средняя скорость может изменяться по направлению.
Кроме того, условие неизменности характера скоростей жидкости по живому сечению можно записать в виде α = const, где αкоэффициент Кориолиса. Последнее условие может быть соблюдено лишь при достаточном удалении рассматриваемого участка потока от входа в трубу.

Если выделить на участке трубы с равномерно текущей жидкостью два произвольных сечения 1 и 2, то потери напора при перемещении жидкости между этими сечениями можно описать при помощи уравнения Бернулли:

z1 + p1/γ = z2 + p2/γ +hтр,

где:
z1 и z2 – перепад высот между центрами соответствующих сечений;
p1 и p2 – давление жидкости в соответствующих сечениях;
γ – удельная плотность жидкости, γ = gρ;
hтр – величина потерянной энергии (потери на трение).

Из этой формулы выразим величину потерянной энергии hтр:

hтр = (z1 + p1/γ) - (z2 + p2/γ).

Это выражение называют уравнением равномерного движения жидкости в трубопроводе. Если труба расположена горизонтально, т. е. перепад высот между ее сечениями отсутствует, то уравнение примет упрощенный вид:

hтр = p1/γ - p2/γ = (p1 – p2)/γ.

***



Формула Дарси-Вейсбаха для равномерного движения жидкости в трубах

При равномерном движении жидкости в трубах потери напора на трение по длине hл определяют по формуле Дарси-Вейсбаха, которая справедлива для круглых труб, как при турбулентном, так и при ламинарном режиме. расчет гидравлических сопротивлений Эта формула устанавливает зависимость между потерями напора hл, диаметром трубы d и средней скоростью потока жидкости v:

hл = λv2/2gd,

где:
λ – коэффициент гидравлического трения (величина безразмерная);
g – ускорение свободного падения.

Для труб произвольного сечения в формуле Дарси-Вейсбаха используют понятие приведенного или эквивалентного диаметра сечения трубы по отношению к круглому сечению.

В некоторых случаях используют также формулу

hл = v2l/C2R,

где:
v – средняя скорость потока в трубе или канале;
l – длина участка трубы или канала;
R – гидравлический радиус потока жидкости;
Скоэффициент Шези, связанный с коэффициентом гидравлического трения λ зависимостью: С = √(8g/λ) или λ = 8g/С2. Размерность коэффициента Шези – м1/2/с.

Для определения коэффициента гидравлического трения при различных режимах и условиях движения жидкости применяют различные способы и эмпирические зависимости, в частности, график И. И. Никурадзе, формулы П. Блазиуса, Ф. А. Шевелева (для гладких труб) и Б. Л. Шифринсона (для шероховатых труб). Все эти способы и зависимости опираются на критерий Рейнольдса Re и учитывают состояние поверхности труб.

***

Потери напора из-за местных сопротивлений

Как уже указывалось выше, местные потери напора обусловлены преодолением местных сопротивлений, создаваемых фасонными частями, арматурой и прочим оборудованием трубопроводных сетей, а также изменением направления потока жидкости (изгибы труб, колена и т. п.).
Местные сопротивления вызывают изменение величины или направления скорости движения жидкости на отдельных участках трубопровода, что связано с появлением дополнительных потерь напора.
Движение в трубопроводе при наличии местных сопротивлений является неравномерным.

Потери напора в местных сопротивлениях hм (местные потери напора) вычисляют по формуле Вейсбаха:

hм = ξv2/2g,

где:
v – средняя скорость в сечении, расположенном ниже по течению за местным сопротивлением;
ξ – безразмерный коэффициент местного сопротивления, определяемый для каждого вида местного сопротивления по справочным таблицам или установленным зависимостям.

Потери напора при внезапном расширении трубопровода находят по формуле Борда:

hвн.р. = (v1v2)2\2g = ξвн.р.1v12/2g = ξвн.р.2v22/2g,

где v1 и v2 – средние скорости течения до и после расширения.

При внезапном сужении трубопровода коэффициент местного сопротивления определяется по формуле:

hвн.с. = (1/ε - 1)2,

где ε - коэффициент сжатия струи, определяемый, как отношение площади сечения сжатой струи в узком трубопроводе к площади сечения узкой трубы. Этот коэффициент зависит от степени сжатия потока n = S2/S1 и может быть найден по формуле А. Д. Альтшуля:    ε = 0,57 + 0,043/(1,1 - n).
Значение коэффициента ε при расчетах трубопроводов берут из справочных таблиц.

При резком повороте трубы круглого поперечного сечения на угол α коэффициент сопротивления можно найти по формуле:

ξα = ξ90˚(1 – cos α),

где:
ξ90˚ - значение коэффициента сопротивления для угла 90˚, которое для точных расчетов принимается по справочным таблицам, а для приближенных расчетов принимается равным ξ90˚ = 1.

расчет гидравлических сопротивлений

Аналогичными методами осуществляют подбор или расчет коэффициентов сопротивления для других видов местных сопротивлений – резкое или постепенное сужение (расширение) трубопровода, повороты, входы и выходы из трубы, диафрагмы, запорные устройства, сварочные швы и т. п.

Приведенные выше формулы применимы для турбулентного режима движения жидкостей с большими числами Рейнольдса, когда влияние вязкости жидкости незначительно.
При движении жидкости с малыми числами Рейнольдса (ламинарный режим) величина местных сопротивлений мало зависит от геометрических характеристик сопротивления и скорости потока, на их величину большее влияние оказывает величина числа Рейнольдса.
В таких случаях для расчета коэффициентов местных сопротивлений применима формула А. Д. Альтшуля:

ξ = А/Re + ξэкв,

где:
А – нестесненное сечение трубопровода;
ξэкв – значения коэффициента местного сопротивления в квадратичной области;
Re - число Рейнольдса.

Значения параметра А и некоторых местных сопротивлений приводятся в справочных таблицах и используются при практических расчетах трубопроводов, предназначенных для движения жидкостей в ламинарном режиме.

***

Трубопроводы и их гидравлический расчет