Основы гидравлики





Гидравлический удар



Гидравлическим ударом (гидроударом) называется резкое повышение давления в трубопроводе при внезапной остановке движущейся жидкости.
что такое гидравлический удар Скачок давления вызывает внезапная преграда на пути потока жидкости, и последствия этого явления зависят от энергии, которой обладает поток. Несмотря на то, что по представлению обывателя жидкостью невозможно "ударить", подобное явление может нанести настолько внушительный погром в русле (например, в трубопроводе), которого не всегда удается достигнуть увесистой кувалдой.

Гидравлический удар может иметь место при быстром закрывании различных запорных устройств (задвижек, кранов), при внезапной остановке насоса перекачивающего жидкость, и т.д.
Подобное нередко приводит к разрушению трубопроводов, арматуры и гидромашин, поскольку массивы подвижной жидкости, перемещающиеся в напорном режиме, могут нести в себе значительную кинетическую энергию.

Чтобы понять суть процессов, сопровождающих явление гидравлического удара, рассмотрим трубопровод, по которому движется жидкость со скоростью v (рис.1). При этом кинетическая энергия потока прямо пропорциональна квадрату его скорости и массе перемещающейся по трубопроводу жидкости. Если принять условие неразрывности потока, то в длинных трубопроводах массивы движущейся жидкости могут достигать значительной величины, что в совокупности с высокой скоростью придает жидкости колоссальную энергию движения (кинетическую энергию).

Если быстро закрыть установленный на трубопроводе кран, то слой жидкости, находящийся непосредственно у крана, останавливается. При этом кинетическая энергия частиц жидкости превращается в потенциальную и давление быстро возрастает. В результате происходят сжатие ближнего к крану слоя жидкости и деформация трубопровода.
В следующий момент остановится соседний слой, затем последующий и так по всей длине трубопровода.
Таким образом, жидкость в трубе останавливается не мгновенно, а через некоторый промежуток времени, который определяется соотношением:

Δt = L/C,

где L - длина трубопровода, C - скорость распространения ударной волны.

В момент остановки последнего слоя жидкости (в точке А) или в момент достижения ударной волны входного сечения трубопровода вся жидкость в трубопроводе окажется сжатой, скорости частиц жидкости равны нулю, а давление имеет максимальное значение. При этом через время Δtв точке А давление жидкости слева меньше, чем справа.
что такое гидравлический удар В этих условиях равновесие жидкости нарушается, и она начинает перемещаться из трубопровода в резервуар, при этом давление в трубопроводе понижается.
Через время Δt давление в трубопроводе станет меньше, чем было до закрытия крана, и жидкость из резервуара снова начнет перемещаться в трубопровод. Вследствие действия внутренних сопротивлений колебания давления в трубопроводе будут затухающими.
Давление жидкости при гидравлическом ударе определяется по формуле Н.Е. Жуковского:

Δp = Cρv,        (1)

где ρ - плотность жидкости.
Для чугунных и стальных водопроводных труб скорость распространения ударной волны принимается 1000...1400 м/с.

Из формулы Жуковского следует, что при скорости воды (имеющей плотность ρ ≈ 1000 кг/м3) в трубе v = 1 м/с, в момент резкого перекрытия трубы давление в ней возрастет на величину, равную 100...140 кПа.
Гидравлический удар особенно опасен для длинных трубопроводов, в которых движутся значительные массы жидкости с большими скоростями, и внезапное уменьшение скорости (или резкая остановка) этой массы приводит к деформации трубопроводов и их разрушению.

Для предотвращения разрушения гидравлических систем применяются различные конструктивные устройства. Основными из них являются винтовые запорные устройства, предохранительные клапаны и воздушные колпаки (рис. 2).

устройства, предохраняющие трубы от гидравлического удара

а - винтовые запорные устройства; б - предохранительные клапаны; в - воздушные колпаки

Винтовые запорные устройства просты, широко распространены для защиты трубопроводов от гидравлических ударов и обеспечивают достаточно продолжительное время перекрытия проходного сечения трубопровода.
Если необходимо быстро перекрыть трубопровод, применяются специальные устройства – предохранительные клапаны, воздушные колпаки и др.

***



Использование гидравлического удара в технике

Резкое повышение давления при гидравлическом ударе часто бывает весьма опасно. Однако человеческая мысль нашла применение и этому явлению. В 1796 г. была изобретена водоподъемная машина - гидравлический таран.
Гидравлический таран - весьма простое устройство, позволяющее подавать воду с некоторого горизонтального уровня h1на более высокую отметку H2, используя эффект гидравлического удара.

Устройство состоит (рис. 3) из: рабочей камеры 1 с двумя клапанами - ударным 8 и нагнетательным 2, воздушного колпака 5, питательной трубы 3, соединяющей таран с водоемом 4, нагнетательной трубы 6, соединяющей таран с бассейном 7, расположенным выше водоема.

Принцип работы гидравлического тарана

Для упрощения будем считать, что в начальный момент оба клапана тарана закрыты, избыточное давление в воздушном колпаке pr = ρgH, вода в водоеме неподвижна.

устройства, предохраняющие трубы от гидравлического удара

Рис. 3. Схема гидравлического тарана

Для запуска гидротарана необходимо открыть ударный клапан 8. Вода начнет вытекать через этот клапан, а скорость течения воды в питательной трубе 3 будет постепенно увеличиваться от нуля до некоторой предельной величины vпр, которая должна соответствовать напору H и гидравлическим сопротивлениям в системе питательная труба - ударный клапан.

Одновременно со скоростным напором v2/2g будет расти и гидродинамическое давление, действующее на ударный клапан снизу. Когда значение этого давления создаст усилие, превышающее вес клапана, последний закроется и произойдет гидравлический удар.
Давление в питательной трубе резко возрастет, в результате откроется нагнетательный клапан 2.
Вода начнет поступать в воздушный колпак 5, сжимая в нем воздух, а из воздушного колпака по нагнетательному трубопроводу - в приемный бассейн.

В момент закрытия ударного клапана в питательной трубе 3 начнется волновой процесс, который приведет к уменьшению скорости и понижению давления в этой трубе. Поэтому спустя некоторое время после закрытия ударного клапана давление в питательной трубе уменьшится настолько, что нагнетательный клапан 2 закроется, а ударный клапан 8 автоматически откроется, и начнется новый цикл.

Таран работает автоматически, подавая воду порциями, а воздушный колпак сглаживает пульсацию воды в нагнетательной трубе, обеспечивая сравнительно равномерную подачу Q2 ее в верхний бассейн 7. Однако большая часть воды Q1, поступающей из водоема Q = Q1 + Q2, сбрасывается через ударный клапан.
Отметим, что:
Q1 – расход воды через ударный клапан 8;
Q2 – расход воды через нагнетательную трубу 6;
Q = Q1 + Q2 - расход воды через питательную трубу 3.

Запишем выражения для следующих мощностей (без учета потерь в соответствующих трубопроводах):

мощность, затрачиваемая на приведение тарана в действие:
          Nзатр = ρgQH1;

полезная мощность тарана:
          Nпол = ρgQ2H2,
где H2 - полезная высота нагнетания.

Выразим КПД гидравлического тарана. Очевидно, что

h = Nпол / Nзатр = Q2H2 / QH1,       (2)

где Q = Q1 + Q2.

Проанализируем выражение (2).
Для данной конструкции тарана величины Q1 и Q2 будут определенными и постоянными, т.е.
Q2 = соnst    и   Q1 = const.
Таким образом, формулу (2) можно представить в виде:

h= CH2/H1.

Можно сделать вывод, что значения КПД тарана зависят от отношения H2/H1.
При H2 = 0, h = 0;    при H1 → ∞, h → 0;    при H2 = H1, h = С = Q2/Q.
Из анализа полученных результатов следует, что максимальное значение КПД тарана можно определить по формуле:

hmax = С = Q2/Q = Q2/(Q1 + Q2).

***

Истечение жидкости из отверстий в тонкой стенке