Основы гидравлики





Гидравлический расчет трубопроводов



Трубопроводы и их классификация

Трубопроводами в народном хозяйстве называют искусственно созданные сооружения, предназначенные для транспортировки жидких, газообразных или твердых веществ, либо их смесей за счет разницы давлений в поперечных сечениях трубы.

гидравлический расчет трубопроводов

В зависимости от назначения и типа транспортируемого вещества трубопроводы подразделяют на водопроводы, водовыпуски, водостоки (дренажи), канализацию, газопроводы, воздухопроводы, паропроводы, теплопроводы, кислородопроводы, аммиакопроводы, нефтепроводы, мазутопроводы, гидротранспорт полезных ископаемых, пневматическую почту и некоторые другие.

В гидравлике при расчете трубопроводов их подразделяют на короткие и длинные. Такое деление является условным, и основано на величине потерь напора при перемещении жидкости по трубопроводу.
В длинных трубопроводах потери напора по длине значительно превышают местные потери напора, а в коротких трубопроводах эти потери соизмеримы между собой.
Принято считать, что при длине l < 50 м трубопровод является коротким, а при l > 100 м – трубопровод длинный.
При l = 50…100 м, в зависимости от соотношения потерь напора, трубопровод может быть длинным либо коротким.

***

Гидравлический расчет короткого трубопровода

Короткие трубопроводы рассчитывают непосредственно по уравнению Бернулли, представленному в следующем виде:

Нн + БнQ2 = Нк + БкQ2 + ΣS0Q2l + Σ Б ξ Q2    (1).

Здесь Б = 8/gπ22 – величина, зависящая от расчетного диаметра трубы и определяемая по специальным справочным таблицам;
ξ – коэффициент местных сопротивлений;
S0 = 8λ/π2gd5 – удельное сопротивление трубы;
l – длины участков трубопроводов;

Нн и Нк – пьезометрические напоры в начале и конце трубопровода, определяемые по формуле:

Н = z + p/ρg,

где:
z – геодезическая отметка какой-либо точки трубопровода;
р – избыточное давление в этой точке;
р/ρg – пьезометрическая высота (свободный напор).

При расчетах трубопроводов применяют различные эмпирические зависимости и формулы, полученные экспериментально-опытным путем, позволяющие определить коэффициент гидравлического трения:

- для гидравлически гладких труб – формулу Блазиуса: λ = 0,3164/Re0,25    (Re - число Рейнольдса);

- для полиэтиленовых водопроводных труб, работающих в области гидравлически гладких труб – формулу Шевелева: λ = 0,0134/(dv)0,226,   (здесь v – скорость потока);

- для вполне шероховатых труб применяют формулу Шифринсона: λ = 0,11(k/d)0,25,   (k – средняя высота выступов шероховатости на внутренней поверхности трубы).

Удельные сопротивления S0кв для бывших в эксплуатации стальных и чугунных труб, работающих при скоростях потока v ≥ 1,2 м/с (квадратичная область сопротивления), определяются с учетом гидравлического коэффициента трения λ по формулам Ф. А. Шевелева.
Значение удельных сопротивлений можно найти в специальных справочных таблицах.

При скоростях потока v < 1,2 м/с (переходная область сопротивления) удельные сопротивления S0 определяют по формуле

S0 = S0кв θ ,

где θ – поправочный коэффициент, определяемый в зависимости от скорости.

При расчетах коротких трубопроводов из уравнения Бернулли (1) определяют (в зависимости от условий задачи) расход Q или необходимый напор Нн в начале трубопровода, либо диаметр трубопровода d и т. д.

***



Гидравлический расчет длинного трубопровода

Длинные трубопроводы рассчитываются, как и короткие, по уравнению Бернулли, но местными потерями и скоростными напорами в них пренебрегают ввиду их относительной малости.
расчет длинных трубопроводов Для большей точности местные потери напора можно приближенно учесть, приняв расчетную длину трубопровода на 5-10 % больше фактической.
С учетом этого уравнение (1) принимает вид:

Нн – Нк = ΣS0Q02l     (2).

Знак суммы Σ указывает, что если трубопровод состоит из нескольких последовательных участков, то потери напора на них складываются. Для одиночного трубопровода формула (2) упрощается:

Нн – Нк = S0Q02l    (3).

Для расчета длинных трубопроводов применяется также формула

Q = К √ip    (4),

где:
ip = (Нн – Нк)/l – пьезометрический уклон;
К – расходная характеристика, зависящая, как и удельное сопротивление S0, в основном, от диаметра и материала трубы, а также от скорости потока.

Так как S0 = 1/К, то формулы (3) и (4) равнозначны.

Значения расходных характеристик Ккв стальных, бетонных и железобетонных трубопроводов, имеющих разный коэффициент шероховатости, приводятся в справочных таблицах. При этом потери напора для труб, работающих в квадратичной области сопротивления (при скорости потока v ≥ 1,2 м/с) определяются по формуле:

Нн – Нк = Q2l/K2.

При работе стальных труб в переходной области сопротивления (v < 1,2 м/с) расходная характеристика определяется по формуле:

К = Ккв / √ θ .

При расчете простых длинных трубопроводов обычно необходимо определить одну из неизвестных величин, чаще всего начальный напор Нн, расход Q или диаметр трубы d, которые легко вычислить по формуле (3) или (4).

При проектировании новых трубопроводов могут быть неизвестны две величины – напор в начальной точке и диаметр трубы. В этом случае задаются диаметром трубопровода (в зависимости от требуемого расхода) и рекомендуемыми из экономических соображений предельными скоростями vпр:

d = 1,13√(Q/vпр).

Предельные скорости потока (в зависимости от величины расхода и материала труб) приводятся в справочных таблицах. Для ориентировочных расчетов можно принимать средние значения предельных скоростей для данного материала труб.

Если на участке трубопровода производится непрерывная раздача воды по пути, то расчетный расход увеличивается:

Qр = Qтр + 0,55Qпут,

гидравлический расчет трубопроводов

где:
Qтр – транзитный расход, проходящий по всей длине трубопровода;
Qпут – путевой расход (непрерывная раздача) на участке: Qпут = q0l, где q0 – удельный путевой расход на 1 м длины трубопровода.

Трубопроводы, имеющие параллельные ответвления с общими узловыми точками в их конце и начале, рассчитывают с учетом того, что потери напора по всем участкам одинаковы.
Расходы в параллельных ветвях определяются при помощи системы уравнений, которая приведена на рис. 1.
Потери напора для таких трубопроводов определяются как потери напора в одной из параллельных ветвей.

Если в начале трубопровода напор создается насосом, то его мощность определяется по формуле:

Nнас = ρgQHнас/103η, (кВт, если ρ – в кг/м3, а Q – в м3/с),

где:
η – коэффициент полезного действия насоса;
Ннас = h + ΣS0Q2l – полный напор насоса, состоящий из геометрической высоты подъема h = Hсв + zк – zн (здесь Нсв = рк/ρg – свободный напор в конце трубопровода) и суммы потерь напора на всасывающем и нагнетательном трубопроводах.

Если высота всасывания и потери напора во всасывающей трубе незначительны, то напор насоса можно принимать как сумму высоты нагнетания и потерь напора при нагнетании.

***

Гидравлический удар