Основы гидравлики





Решение задач по гидродинамике



На этой странице приведена подборка несложных задач по гидродинамике жидкостей и теплотехнике, которые могут быть использованы для текущего контроля освоения дисциплины студентами.
К каждой задаче прилагается вариант решения с ответом.
Следует отметить, что решение большинства подобных задач возможно с использованием разных способов и алгоритмов, поэтому приведенные примеры решений не являются эталоном. Тем не менее, при разных методах решения задачи, результат решения (ответ) должен быть одинаковым.

***

Задача

Определить скорость движения жидкости в подводящей линии и скорость поршня, если известны:

задачи по гидродинамике с вариантами решений
  • диаметр трубопровода d = 0,012 м;
  • диаметр поршня D = 0,07 м;
  • подача насоса Q = 1,7х10-3 м3.

Потери напора в местных сопротивлениях не учитывать.

Правильное решение:

Скорость движения жидкости в подводящей линии:

vж = Q/Sтруб = 4Q/πd2 = (4×1,7×10-3)/(3,14×0,0122) = 15,04 м/с.

где Sтруб = πd2/4 – площадь сечения трубопровода подводящей линии.

Скорость перемещения поршня:

vп = Q/Sп = 4Q/πD2 = (4×1,7×10-3)/(3,14×0,072) = 0,44 м/с.

Ответ: скорость движения жидкости в подводящей линии – 15,04 м/с, скорость поршня – 0,44 м/с.

***

Задача

Определить режимы движения рабочей жидкости в питающей и отводящей линии гидропривода, изображенного на схеме в приведенной выше задаче.
Исходные данные:
Скорость движения жидкости в питающей линии v1 = 15,04 м/с;
скорость движения жидкости в отводящей линии v2 = 10,08 м/с;
вязкость жидкости v = 0,5×10-4 м2;
диаметр трубопроводов d = 0,012 м;
критическое число Рейнольдса для рабочей жидкости равно Reкр = 2320.
Потери напора в местных сопротивлениях и трубопроводах не учитывать.

Правильное решение:

Числа Рейнольдса, характеризующее режим движения жидкости, определяется по формуле:

Re = vd/v,

где:
v – скорость движения жидкости в трубопроводе;
d – диаметр трубопровода;
v – кинематическая вязкость жидкости.

Тогда для питающей и отводящей линии число Рейнольдса будет соответственно равно:

Re1 = v1d /v = (15,04×0,012)/(0,5×10-4) = 3610;
  Re2 = v2d /v = (10,08×0,012)/(0,5×10-4) = 2419.

Так как, полученные числа Re1 и Re2 больше критического Reкр = 2320, то движение жидкости в обоих случаях будет турбулентным.

Ответ: в питающей и отводящей линии режим движения жидкости будет турбулентным.

***

Задача

Определить режим движения нефти в трубопроводе диаметром d = 400 мм при скорости движения v = 0,13 м/с.
Кинематическая вязкость нефти v = 0,3×10-4 м2, критерий Рейнольдса для нефти, определяющий переход от ламинарного движения к турбулентному Reкр = 2000…2300.

Правильное решение:

Приведем исходные данные к системе единиц СИ: d = 0,4 м.
Чтобы определить режим движения нефти в трубопроводе, вычислим число Рейнольдса для данного диаметра труб и скорости потока:

Re = vd/v = 0,13×0,4/0,3×10-4 = 1733.

Ответ: поскольку число Рейнольдса менее критического значения, движение нефти в трубопроводе будет осуществляться в ламинарном режиме.

***

Задача

В дне бака высотой H = 4 м проделано отверстие площадью S = 4 см2.
Бак наполнен водой доверху, при этом уровень воды поддерживается постоянным благодаря пополнению из водопровода.
Определите, какую подачу воды должен обеспечить водопровод, чтобы ее уровень в баке оставался неизменным.
Коэффициент расхода отверстия равен μs = 0,6.

Правильное решение:

Подача (расход) воды определяется произведением площади отверстия S на скорость v истекающей из отверстия струи, поскольку объем вытекающей из отверстия воды должен компенсироваться водой из водопровода.
При истечении воды из малого отверстия в баке с постоянно поддерживаемым напором скорость струи v может быть определена по формуле Торричелли:

v = μs √(2gH)     (м/с),

где:  g = 9,81 м/с2 - ускорение свободного падения, Н = 4 м – напор (уровень отверстия).

Тогда, с учетом формулы Торричелли, получим требуемую подачу воды из водопровода:

Q = Sv = S μs √(2gH) = 4×10-4×0,6(2×9,81×4) ≈ 2,126×10-3 м3/с ≈ 2,1 л/с.

Ответ: требуемый расход воды из водопровода примерно равен 2,1 л/с.

***

Задача

Вода вытекает из бака через конический сходящийся насадок с минимальным пропускным сечением S = 2 см2 в ведро емкостью V = 10 л.
Коэффициент расхода насадка μs = 0,96.
Уровень воды в баке поддерживается постоянным от водопроводной сети.
задачи по гидродинамике с вариантами решений и ответами Центр сечения насадка расположен на глубине H = 1,2 м от поверхности воды в баке.
Определить время t заполнения ведра водой.

Правильное решение:

При истечении жидкости из насадка при постоянном напоре объемный расход определяется по формуле:

Q = μs S√(2gH)    (м3/с),

где:   g = 9,81 м/с2 - ускорение свободного падения.

Приведем исходные данные к системе единиц СИ (S = 0,0002 м2, V = 0,01 м3), и, подставив известные величины в формулу, получим:

Q = μs S√(2gH) = 0,96×0,0002×(2×9,81×1,2) ≈ 0,00093 м3/с.

Чтобы определить время заполнения ведра водой необходимо объем ведра разделить на полученный объемный расход жидкости:

t = V/Q = 0,01/0,00093 ≈ 10,75 с.

Ответ: ведро наполнится водой через 10,75 секунд.

***




Задачи по расчету параметров насосов

Задача

При частоте вращения вала 1000 мин-1 центробежный насос потребляет 4 кВт энергии, подает 20 литров воды в секунду под напором 10 метров.
Определить, как изменятся рабочие параметры насоса, если частоту вращения вала увеличить до 3000 мин-1.

Правильное решение:

Зависимость рабочих параметров насоса от частоты вращения вала выражается уравнениями:

n1/n2 = Q1/Q2;     n12/n22 = H1/H2;    n13/n23 = N1/N2,

т. е. при увеличении частоты вращения вала насоса в три раза, его подачу, напор и потребляемую мощность можно определить по формулам:

Q2 = Q1 n2/n1 = 3Q1 = 60 л/с;    H2 = H1 √(n2/n1) ≈ 17,3 м;    N2 = 3√(n2/n1)N1 ≈ 11,95 кВт.

Ответ: при увеличении частоты вращения до 3000 мин-1 подача насоса составит 60 л/с, напор – приблизительно 17,3 м, а потребляемая мощность – приблизительно 11,95 кВт.

***

Задача

Определите, какова объемная подача двухцилиндрового поршневого насоса, если диаметр его поршней d = 0,1 м, рабочий ход поршней l = 0,1 м, частота вращения вала приводного электродвигателя n = 960 мин-1.
Объемные потери не учитывать.

Правильное решение:

Объемная подача поршневого насоса может быть определена, как рабочий объем всех его цилиндров, умноженный на количество рабочих циклов за единицу времени.
Частота вращения вала насоса n = 960 мин-1 = 16 с-1, т. е. за одну секунду двухцилиндровый насос совершает 2×16 рабочих циклов (каждый цилиндр за один оборот совершает 1 цикл).
Рабочий объем одного цилиндра: Vц = l πd2/4   (м3).

Тогда объемная подача насоса (без учета потерь) при данной частоте вращения составит:

Q = 2×16×l πd2/4 = 2×16×0,1×3,14×0,12/4 = 0,02512 м3/с.

Ответ: объемная подача насоса составляет чуть более 25 л/с.

***

Задача

Определить диаметр поршней d аксиально-поршневого насоса, если известны параметры:

задачи по расчету насосов
  • диаметр окружности, на которой размещены поршни D = 80 мм;
  • количество поршней в насосе z = 6;
  • угол наклона диска (шайбы насоса) к оси цилиндров γ = 45˚;
  • подача насоса Q равна 0,001 м3 при частоте вращения вала n = 50 с-1.

Правильное решение:

Подача аксиально-поршневого насоса определяется по формуле:

Q = znD tg γ πd2/4.

С учетом того, что tg γ = tg 45˚ = 1, а диаметр D в системе единиц СИ равен 0,08 м, выразим и определим из этой формулы диаметр поршней d:

d = √(4Q/πznD tg γ) = (4×0,001/3,14×6×50×0,08×1) ≈ 0,0073 м ≈7,3 мм.

Ответ: диаметр поршней насоса приблизительно равен 7,3 мм.

***

Задача

Определите, какую мощность должен иметь электродвигатель привода водяного насоса, если насос при подаче Q = 0,05 м3 создает напор Н = 40 м, а его полный КПД η = 0,6.
Плотность воды принять равной ρ = 1000 кг/м3.

Правильное решение:

Полезная мощность любого насоса может быть определена по формуле:

Nп = ρgQH,

где    g = 9,81 м/с2 – ускорение свободного падения.

Потребляемая мощность Nп, т. е. мощность, которую на работу насоса затрачивает электродвигатель Nэд (без учета потерь в приводе), равна полезной мощности с учетом КПД:

Nэд = Nп/η = ρgQH/η = 1000×9,81×0,05×40/0,6 = 32700 Вт = 32,7 кВт.

Ответ: для обеспечения работы насоса в заданном режиме
необходим электродвигатель мощностью 32,7 кВт.

***

Задача

Привод водяного насоса обеспечивает частоту вращения его вала n1 = 15 с-1, при этом подача насоса составляет Q1 = 0,01 м3, а напор H1 = 20 м.
Определите, какова должна быть частота вращения вала насоса, если потребуется увеличить его напор до 80 м.
Как изменится при этом подача насоса?

Правильное решение:

Зависимость рабочих параметров насоса от частоты вращения его вала выражается уравнениями:

n1/n2 =Q1/Q2;    n12/n22 = H1/H2,

т. е. для увеличения напора в четыре раза, частота вращения вала насоса должна возрасти в два раза:

n2 = n1 √(H2/H1) = n1√4 = 2n1.

В соответствии с первой формулой, при увеличении частоты вращения вала насоса в два раза его подача тоже возрастет в два раза, и составит Q2 = 0,02 м3/с.

Ответ: для увеличения напора до 80 м (т. е. в четыре раза)
вал насоса должен вращаться с частотой 30 с-1, при этом подача насоса возрастет в два раза.

***

Задача
определение характеристик насосов

Определите по приведенной здесь графической характеристике поршневого насоса, какова будет потребляемая им мощность и полный КПД, если подача равна 0,52 л/с.
Какое давление в системе при этом насос развивает?
Охарактеризуйте форму кривой, отображающей график зависимости Q = f(p).


Правильный ответ:

При подаче Q = 0,52 л/с насос потребляет мощность примерно равную 1,2 кВт, его КПД составляет 0,65 (максимальное значение).
Давление в системе при этом равно 1,6 МПа.

Зависимость подачи насоса от давления в системе отображает кривая Q = f(p), которая показывает, что с нарастанием давления в системе подача уменьшается, при этом резкий спад величины подачи начинается при увеличении давления от точки на графике, характеризующей максимальный КПД насоса.

***

Примеры решения задач по гидравлике и теплотехнике

Скачать задачи по гидравлике с вариантами решений
(в формате Word, размер файла 324 кБ - 27 задач с решениями и вопросы по насосам)

Скачать теоретические вопросы к экзаменационным билетам по дисциплине "Основы гидравлики и теплотехники"
(в формате Word, размер файла 68 кБ)