Материаловедение



Неорганические конструкционные материалы




Неорганическим конструкционным материалам присущи негорючесть, высокая стойкость к нагреву, химическая стойкость, неподверженность старению, большая твердость, хорошая сопротивляемость сжимающим нагрузкам.
Однако они обладают повышенной хрупкостью, плохо переносят резкую смену температур, слабо сопротивляются растягивающим и изгибающим усилиям и имеют большую плотность по сравнению с органическими полимерными материалами.

неорганические конструкционные материалы

Основой неорганических материалов являются главным образом окислы и бескислородные соединения металлов. большинство неорганических материалов содержит различные соединения кремния с другими элементами. эти материалы объединяют общим названием силикатные.
В настоящее время применяют не только соединения кремния, но и чистые окислы алюминия, магния, циркония и др., обладающие более ценными техническими свойствами, чем обычные силикатные материалы.

Неорганические материалы подразделяют на неорганическое стекло и стеклокристаллические материалы – ситаллы и керамику.

Неорганическое стекло следует рассматривать как особого вида затвердевший раствор – сложный расплав высокой вязкости кислотных и основных окислов.

Стеклообразное состояние является разновидностью аморфного состояния вещества. При переходе стекла из расплавленного жидкого состояния в твердое аморфное в процессе быстрого охлаждения и нарастания вязкости обеспечивается беспорядочная структура, свойственная жидкому состоянию.

В состав неорганических стекол входят:

  • стеклообразующие окислы кремния, бора, фосфора, германия, мышьяка, образующие структурную сетку;
  • модифицирующие окислы натрия, калия, лития, кальция, магния, бария, изменяющие физико-химические свойства стекломассы.

Кроме того, в состав стекла вводят окислы алюминия, железа, свинца, титана, бериллия и др., которые самостоятельно не образуют структурный каркас, но могут частично замещать стеклообразующие и этим сообщать стеклу нужные технические характеристики. В связи с этим промышленные стекла являются сложными многокомпонентными системами.

Стекла классифицируют по ряду признаков: по стеклообразующему веществу, по содержанию модификаторов и по назначению.

В зависимости от химической природы стеклообразующего вещества стекла подразделяют на:

  • силикатные (SiO2);
  • алюмосиликатные (А12О3 – SiO2);
  • боросиликатные (В2О3 – SiO2);
  • алюмоборосиликатные (А12О3 – В2О3 – SiO2);
  • алюмофосфатные (А12О3 – Р2О5) и др.

По содержанию модификаторов стекла бывают щелочными (содержащими окислы Na2O, К2О), бесщелочными и кварцевыми.

По назначению все стекла подразделяют на технические (оптические, светотехнические, электротехнические, химико-лабораторные, приборные, трубные); строительные (оконные, витринные, армированные, стеклоблоки) и бытовые (стеклотара, посудные, бытовые зеркала и т. п.).

Технические стекла в большинстве относятся к алюмоборосиликатной группе и отличаются разнообразием входящих окислов. Стекла выпускаются промышленностью в виде готовых изделий, заготовок или отдельных деталей.

Теплозвукоизоляционные стекловолокнистые материалы имеют рыхловолокнистую структуру с большим количеством воздушных прослоек, волокна в них располагаются беспорядочно. Такая структура сообщает этим материалам малую объемную массу (от 20 до 130 кг/м3) и низкую теплопроводность.

Разновидностями стекловолокнистых материалов являются стекловата, применение которой ограничено ее хрупкостью; материалы АСИМ, АТИМС, АТМ-3, состоящие из стекловолокон, расположенных между двумя слоями стеклоткани или стеклосетки, простеганной стеклонитками. Они применяются в интервале температур от минус 60 до плюс 450…600 °С.
Иногда стекловолокна сочетают с термореактивной смолой, придающей матам более устойчивую рыхлую структуру (материал АТИМСС), рабочие температуры – до 150 °С.
Материалы, вырабатываемые из короткого волокна и синтетических смол, называются плитами. Коэффициент звукопоглощения плит при частоте 200…800 Гц равен 0,5; при частоте 8000 Гц – 0,65.

Стекловату, маты, плиты применяют для теплозвукоизоляции кабин самолетов, кузовов автомашин, железнодорожных вагонов, тепловозов, электровозов, корпусов судов, в холодильной технике, ими изолируют различные трубопроводы, автоклавы и т. д.

***



Ситаллы и керамика

Ситаллы получают на основе неорганических стекол путем их полной или частичной управляемой кристаллизации. За рубежом их называют стеклокерамикой, пирокерамами. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов – более мелкозернистой и однородной микрокристаллической структурой.

Ситаллы получают путем плавления стекольной шихты специального состава с добавкой нуклеаторов (катализаторов), охлаждения расплава до пластичного состояния и формования из него изделий методами стекольной технологии и последующей ситаллизации (кристаллизации). Ситалловые изделия получают также порошковым методом спекания.

В состав стекла, применяемого для получения ситаллов, входят окислы LiO2, A12O3, SiO2, MgO, CaO и др. и катализаторы кристаллизации (нуклеаторы).
силикаты, ситаллы и другие неорганические конструкционные материалы К числу последних относятся соли светочувствительных металлов Аu, Ag, Сu, которые являются коллоидными красителями и находятся в стекле в виде мельчайших коллоидно-дисперсных частиц, а также фтористые и фосфатные соединения, ТiO2 и др., представляющие собой глушители, распределяющиеся в стекле в виде плохо растворимых частичек.

Керамика – неорганический материал, получаемый из окислов алюминия (глины) в процессе высокотемпературного обжига.

Керамика на основе чистых оксидов. Оксидная керамика обладает высокой прочностью при сжатии по сравнению с прочностью при растяжении или изгибе; более прочными являются мелкокристаллические структуры. С повышением температуры прочность керамики понижается. Керамика из чистых оксидов, как правило, не подвержена процессу окисления.

Бескислородная керамика. Материалы обладают высокой хрупкостью. Сопротивление окислению при высоких температурах карбидов и боридов составляет 900…1000 °С, несколько ниже оно у нитридов. Силициды могут выдерживать температуру 1300…1700 °С (на поверхности образуется пленка кремнезема).

Графит является одной из аллотропических разновидностей углерода. Это полимерный материал кристаллического пластинчатого строения. Не плавится при атмосферном давлении. Графит встречается в природе, а также получается искусственным путем.

***

Классификация и свойства чугунов