Техническая механика





Сопротивление материалов

Геометрические характеристики плоских сечений



При некоторых видах деформаций прочность и жесткость (способность противостоять деформации) элементов конструкций зависит не только от величины поперечного сечения, но и от формы этого сечения.
Характеристики плоских сечений Самый простой пример - обыкновенную школьную линейку можно легко изогнуть относительно широкой стороны поперечного сечения и совершенно невозможно изогнуть относительно его короткой стороны. При этом общая площадь сечения в обоих случаях одинакова. На основании этого примера становится очевидным, что на сопротивление некоторым видам деформации оказывает влияние (иногда - решающее) не только величина площади сечения бруса, но и его геометрическая форма.
При изучении деформаций изгиба и кручения нам потребуется знание некоторых геометрических характеристик плоских сечений, которые оказывают влияние на способность конструкций сопротивляться деформациям относительно той или иной оси либо полюса (точки).

Чтобы понять суть явления и влияния этих геометрических характеристик на сопротивление бруса, например, изгибу, следует обратиться к основополагающим постулатам сопромата. Как известно из установленного в 1660 году английским физиком Робертом Гуком закона, напряжение в сечениях бруса прямо пропорционально его относительному удлинению. Очевидно, что волокна, расположенные дальше от оси изгиба, растягиваются (или сжимаются) сильнее, чем расположенные вблизи оси. Следовательно, и напряжения возникающие в них будут бόльшими.
Можно привести условную сравнительную аналогию между напряжением в разных точках сечения бруса с моментом силы - чем больше плечо силы - тем больше ее момент (относительно оси или точки). Аналогично - чем дальше от какого-либо полюса (оси) отстоит точка в сечении, тем большее напряжение в ней возникает при попытке изогнуть или скрутить брус относительно этого полюса (оси).

***

Статический момент площади

Статическим моментом площади плоской фигуры относительно оси, лежащей в той же плоскости, называется взятая по всей площади сумма произведений элементарных площадок на расстояния от них до этой оси.

Статический момент площади плоской фигуры обозначают S с индексом оси, относительно которой он рассматривается: Sx, Sy, Sz.

Sx = Σ y dA;        Sy = Σ x dA.

Анализ этих формул позволяет сделать вывод, что статический момент площади фигуры относительно оси, лежащей в этой же плоскости, равен произведению площади фигуры на расстояние от ее центра тяжести до этой оси.

Единица измерения статического момента площади - метр кубический 3).
При определении статического момента площади сложной фигуры можно применять метод разбиения, т. е. определять статический момент всей фигуры, как алгебраическую сумму статических моментов отдельных ее частей. При этом сложная геометрическая фигура разбивается на простые по форме составные части - прямоугольники, треугольники, окружности, дуги и т. п., затем для каждой из этих простых фигур подсчитывается статический момент площади, и определяется алгебраическая сумма этих моментов.

***

Полярный момент инерции

Полярным моментом инерции плоской фигуры относительно полюса (точки), лежащего в той же плоскости, называется сумма произведений элементарных площадок этой фигуры на квадрат их расстояний до полюса.
Полярный момент инерции обозначают Iρ , а формула для его определения записывается так:

Iρ = Σ ρ2 dA.

Единица измерений полярного момента инерции - м4, из чего следует, что он не может быть отрицательным.
Понятие полярного момента инерции понадобится при изучении деформаций кручения круглых валов, поэтому приведем формулы для определения полярного момента квадратного, круглого и кольцевого сечения.

Для квадрата со стороной а:
Ix = a4 / 12
Для круга диаметром d:
Iρ ≈ 0,1 d4
Для кольцевого сечения размером D × d:
Iρ ≈ 0,1 (D4 - d4)

Очевидно, что полярный момент инерции кольцевого сечения равен разности полярных моментов инерции большого и малого кругов, ограничивающих это сечение.

***

Осевой момент инерции

Осевым моментом инерции плоской фигуры относительно оси, лежащей в той же плоскости, называется взятая по всей площади сумма произведений площадей элементарных площадок на квадрат расстояний от них до этой оси (рис).

полярный и осевой момент инерции сечения

Осевой момент инерции обозначается I с индексом, соответствующим оси:

Ix = Σ y2 dA;        Iy = Σ x2 dA.

Если при этом площадь элементарных площадок принять стремящимися к минимуму, то можно использовать методы интегрального исчисления, заменив знак суммы Σ на знак интеграла .
Очевидно, что осевой и полярный момент инерции выражаются в одинаковых единицах - м4. Осевой момент инерции величина всегда положительная и не равна нулю (м4 не может быть отрицательным, а площадь не может быть равной нулю, иначе пропадает и сама фигура, как площадка).
Если сложить осевые моменты инерции плоской фигуры относительно перпендикулярных осей, то получим полярный момент инерции этой фигуры относительно точки пересечения этих осей (начала координат), т. е. :

Ix + Iy = Iρ.

Так как интеграл суммы равен сумме интегралов, то момент инерции сложной фигуры можно вычислить как сумму моментов инерции простых фигур, на которые разбивают сложную фигуру.
Понятие осевого момента инерции понадобится при изучении теории изгиба.

Приведем формулы для определения осевых моментов инерции наиболее часто встречающихся при расчетах форм сечений:

 
Для прямоугольника размером b × h:
Ix = bh3 /12
 
 
Для квадрата со стороной а:
Ix = a4 / 12
 
Для круга диаметром d:
Ix = Iy ≈ 0,05 d4
 
Для кольцевого сечения размером D × d:
Ix = Iy ≈ 0,05 (D4 - d4)

***



Момент инерции при параллельном переносе осей

Оси, проходящие через центр тяжести плоской фигуры, называют центральными осями.
Момент инерции относительно центральной оси называется центральным моментом инерции.

Теорема

Момент инерции относительно какой-либо оси равен сумме момента инерции относительно центральной оси, параллельной данной, и произведения площади фигуры на квадрат расстояния между осями.

Характеристики плоских сечений

Для доказательства этой теоремы рассмотрим произвольную плоскую фигуру, площадь которой равна А, центр тяжести расположен в точке С, а центральный момент инерции относительно оси x будет Ix.
Вычислим момент инерции фигуры относительно некоторой оси x1, параллельной центральной оси и отстоящей от нее на расстоянии а (рис).

Ix1 = Σ y12 dA + Σ (y + a)2 dA =
= Σ y2 dA + 2a Σ y dA + a2 Σ dA
.

Анализируя полученную формулу, отмечаем, что первое слагаемое - осевой момент инерции относительно центральной оси, второе слагаемое - статический момент площади этой фигуры относительно центральной оси (следовательно, он равен нулю), а третье слагаемое после интегрирования может быть представлено в виде произведения a2 A, т. е. в результате получим формулу:

Ix1 = Ix + а2 А - теорема доказана.

На основании теоремы можно сделать вывод, что из ряда параллельных осей осевой момент инерции плоской фигуры будет наименьшим относительно центральной оси.

***

Главные оси и главные моменты инерции

Представим себе плоскую фигуру, моменты инерции которой относительно осей координат Ix и Iy, а полярный момент инерции относительно начала координат равен Iρ. Как было установлено ранее,

Ix + Iy = Iρ.

Если оси координат поворачивать в своей плоскости вокруг начала координат, то полярный момент инерции останется неизменным, а осевые моменты будут изменяться, при этом их сумма останется величиной постоянной. Поскольку сумма переменных величин постоянна, то одна из них уменьшается, а другая увеличивается, и наоборот.
Следовательно, при определенном положении осей один из осевых моментов достигнет максимального значения, а другой - минимального.

Оси, относительно которых моменты инерции имеют минимальное и максимальное значения, называют главными осями инерции.
Момент инерции относительно главной оси называется главным моментом инерции.

Если главная ось проходит через центр тяжести фигуры, она называется главной центральной осью, а момент инерции относительно такой оси - главным центральным моментом инерции.
Можно сделать вывод, что если фигура симметрична относительно какой-нибудь оси, то эта ось всегда будет одной из главных центральных осей инерции этой фигуры.

***

Центробежный момент инерции

Центробежным моментом инерции плоской фигуры называют взятую по всей площади сумму произведений элементарных площадок на расстояние до двух взаимно перпендикулярных осей:

Ixy = Σ xy dA,

где x, y - расстояния от площадки dA до осей x и y.
Центробежный момент инерции может быть положительным, отрицательным и равным нулю.

Центробежный момент инерции входит в формулы для определения положения главных осей несимметричных сечений.
В таблицах стандартных профилей содержится характеристика, которая называется радиусом инерции сечения, вычисляемая по формулам:

ix = √ (Ix / A),        iy = √ (Iy / A),        (здесь и далее знак "√" - знак корня)

где Ix, Iy - осевые моменты инерции сечения относительно центральных осей; А - площадь сечения.
Эта геометрическая характеристика используется при изучении внецентрального растяжения или сжатия, а также продольного изгиба.

***

Материалы раздела "Сопротивление материалов":

Растяжение и сжатие




Правильные ответы на вопросы Теста № 2
№ вопроса
1
2
3
4
5
6
7
8
9
10
Правильный вариант ответа
2
3
2
1
1
3
3
2
2
2