Техническая механика





Сопротивление материалов

Закон Гука для продольных нагрузок



Более 350 лет назад 25-летний английский физик Роберт Гук (в англоязычной транскрипции - Хук) сформулировал зависимость между относительным линейным удлинением тела и величиной растягивающей тело силы.
В оригинале формулировка закона, предложенная Гуком, звучит примерно так:
«Какова сила, таково и удлинение».
В современной трактовке эта зависимость в общем виде формулируется следующим образом:
"Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации".

Казалось бы, очевидный вывод, который напрашивается естественным образом – чем больше сила, приложенная к брусу, тем в большей степени он деформируется. Тем не менее, заслуга Гука заключается в том, что именно он обратил внимание, на линейную (прямо пропорциональную) зависимость между нагрузкой и относительной деформацией.

Открытия многих, казалось бы - очевидных, закономерностей совершают гении. Ведь в течении предшествующих Ньютону человеческих поколений считалось, что чем легче тело, тем дольше оно падает на земную поверхность с высоты. И лишь гений смог опровергнуть это заблуждение миллионов людей. По сути, только великий Эйнштейн сделал неочевидное открытие, которому, впрочем, предшествовали научные исследования и гипотезы многих талантов.

Долгое время закон Гука являлся единственным инструментом новоявленной науки сопротивление материалов, и лежал в основе всех расчетов конструкций на прочность и жесткость. Лишь спустя много лет учеными были установлены более сложные (непропорциональные) зависимости между напряжениями и приложенными к элементам конструкции силовыми факторами, которые, впрочем, тоже основываются на законе Гука.
Большую роль в развитии науки сопротивление материалов сыграли такие видные ученые, как Герц, Журавский, Эйлер, Ясинский и другие, установившие зависимости между напряжениями и сложными видами нагружений. Большинство этих зависимостей и выводов основываются на экспериментально-опытных исследованиях, т. е. получены не только с помощью математического анализа (эмпирические зависимости).

Роберт Гук (1635—1703) считается одним из талантливейших ученых своего времени. Обладавший кипучей творческой энергией, он совершил много интересных открытий в самых разных науках – фундаментальной физике, термодинамике, акустике, оптике, биологии. Достаточно сказать, что Гуку многие ученые отдают пальму первенства в открытии закона всемирного тяготения, считая, что он раньше Ньютона пришел к его осознанию.
Роберт Гук отличался способностью браться за изучение многих явлений в природе, и, зачастую, не закончив исследование одного явления, на полпути к открытию брался за совершенно другой научный труд, а результатами его незавершенных выводов пользовались последователи, увековечивая свое имя в науке.
Тем не менее, этот человек останется в памяти потомков, как автор знаменитого закона Гука.

Математически закон Гука для деформаций растяжения и сжатия можно записать так:

σ = Еε,

где:
σ – напряжение в сечении бруса,
ε - относительное удлинение бруса, которое определяется по формуле ε = Δl/l (здесь Δl – абсолютное удлинение бруса, l – начальная длина бруса),
Е – коэффициент пропорциональности, который называют модулем продольной упругости (или модулем упругости первого рода, или модулем Юнга).

Коэффициент Е является справочной (определяемой экспериментально) величиной, характеризующей способность материала противостоять деформации и измеряется в Паскалях (1 Па = Н/м2).
Поскольку 1 Паскаль – очень маленькая величина (муха весом 14 мг, севшая на столик площадью 1 м2 окажет на него давление, примерно равное 0,00014 Па), поэтому чаще применяют ее производную – 1 МПа (миллион Паскалей, или 1 МПа = 1 000 000 Па).



Математическое выражение закона Гука можно представить в расширенном виде, подставив вместо σ (напряжения) его зависимость от силы и площади сечения: σ = F/A, и вместо ε (удельное удлинение) выражение Δl/l. Тогда получим:
Закон Гука в сопромате F/A = Е(Δl/l), откуда можно выразить абсолютное удлинение (укорочение) бруса в результате приложения внешней силы F:

Δl = Fl/(EA).

Это выражение можно сформулировать следующим образом: абсолютное удлинение (укорочение) бруса прямо пропорционально приложенной внешней нагрузке и длине бруса и обратно пропорционально площади поперечного сечения бруса.
Выражение ЕА, стоящее в знаменателе дроби, часто называют жесткостью сечения при растяжении и сжатии.

Приведенные формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из однородного материала и при постоянной продольной силе. Если брус имеет ступенчатую форму, или состоит из участков, изготовленных из разных материалов, и нагружен на разных участках несколькими продольными силами, то абсолютное изменение длины всего бруса определяют, как сумму абсолютных удлинений его отдельных участков:

Δl = Σ (Δli)

В заключение следует отметить, что закон Гука справедлив в ограниченном диапазоне внешних нагрузок и не применим, когда некоторые напряжения (или деформации) достигают предельных значений, характерных для каждого материала. При превышении предельных значений напряжений линейная зависимость между нагрузками и деформациями не наблюдается.

***

Материалы раздела "Сопротивление материалов":

Метод сечений. Напряжения




Правильные ответы на вопросы Теста № 3
№ вопроса
1
2
3
4
5
6
7
8
9
10
Правильный вариант ответа
1
2
1
2
3
2
1
3
1
3