Техническая механика





Сопротивление материалов

Метод сечений. Напряжения



Сущность метода сечений

Для расчетов элементов конструкции на прочность необходимо знать внутренние силы упругости, возникающие в результате приложения внешних сил в разных точках и частях конструкции.
метод сечений в сопромате и теоретической механике Но как заглянуть внутрь материального тела, чтобы выяснить, какие же силы возникают между его частицами или отдельными частями, при приложении нагрузок? Представление о внутренних усилиях, возникающих в теле или элементе конструкции можно получить лишь с помощью воображения и аксиом статики, поясняющих условия равновесного состояния материальных тел.
Способы определения этих внутренних сил с помощью науки сопротивление материалов включают такой прием, как метод сечений.

Метод сечений заключается в том, что тело мысленно рассекается плоскостью на две части, любая из которых отбрасывается и взамен ее к сечению оставшейся части прикладываются внутренние силы, действовавшие на нее до разреза со стороны отброшенной части. Оставленная часть рассматривается как самостоятельное тело, находящееся в равновесии под действием приложенных к сечению внешних и внутренних сил (третий закон Ньютона – действие равно противодействию).
При применении этого метода выгоднее отбрасывать ту часть элемента конструкции (тела), для которой проще составить уравнение равновесия. Таким образом, появляется возможность определить внутренние силовые факторы в сечении, благодаря которым оставшаяся часть тела находится в равновесии (прием, часто применяемый в Статике).

Применяя к оставленной части тела условия равновесия, невозможно найти закон распределения внутренних сил по сечению, но можно определить статические эквиваленты этих сил (равнодействующие силовые факторы).
Так как основным расчетным объектом в сопротивлении материалов является брус, рассмотрим, какие статические эквиваленты внутренних сил проявляются в поперечном сечении бруса.

Рассечем брус (рис. 1) поперечным сечением а-а и рассмотрим равновесие его левой части.
Метод сечений в сопромате Если внешние силы, действующие на брус, лежат в одной плоскости, то в общем случае статическим эквивалентом внутренних сил, действующих в сечении а-а, будут главный вектор Fгл, приложенный в центре тяжести сечения, и главный момент Мгл = Ми, уравновешивающие плоскую систему внешних сил, приложенных к оставленной части бруса.

Разложим главный вектор на составляющую N, направленную вдоль оси бруса, и составляющую Q, перпендикулярную этой оси и лежащую в плоскости сечения. Эти составляющие главного вектора и главный момент называют внутренними силовыми факторами, действующими в сечении бруса. Составляющую N называют продольной силой, составляющую Qпоперечной силой, пару сил с моментом Миизгибающим моментом.

Для определения указанных трех внутренних силовых факторов применим известные из Статики уравнения равновесия оставленной части бруса:

Σ Z = 0;     Σ Y = 0;     Σ M = 0;    (ось z всегда направляем по оси бруса).

Если внешние силы, действующие на брус, не лежат в одной плоскости, т. е. представляют собой пространственную систему сил, то в общем случае в поперечном сечении бруса возникают шесть внутренних силовых факторов (рис. 2), для определения которых применяют известные из Статики шесть уравнений равновесия оставленной части бруса:

Σ X = 0;     Σ Y = 0;     Σ Z = 0;
Σ Mx = 0;     Σ My = 0;     Σ Mz = 0
.

Эти силовые факторы в общем случае носят следующие названия: N – продольная сила, Qx, Qy – поперечные силы, Мкр – крутящий момент, Мих и Миу – изгибающие моменты.

силовые факторы в сечении бруса

При разных деформациях в поперечном сечении бруса возникают различные силовые факторы.
Рассмотрим частные случаи:

1. В сечении возникает только продольная сила N. Это деформация растяжения (если N направлена от сечения) или сжатия (если N направлена к сечению).

2. В сечении возникает только поперечная сила Q. Это деформация сдвига.

3. В сечении возникает только крутящий момент Мкр. Это деформация кручения.

4. В сечении возникает только изгибающий момент Ми. Это деформация чистого изгиба. Если в сечении одновременно возникает изгибающий момент Ми и поперечная сила Q, то изгиб называют поперечным.

5. Если в сечении одновременно возникает несколько внутренних силовых факторов (например, изгибающий момент и продольная сила), то имеет место сочетание основных деформаций (сложное сопротивление).

***



Напряжение

Наряду с понятием деформации одним из основных понятий сопротивления материалов является напряжение (обозначается р).
Напряжение характеризует интенсивность внутренних сил, действующих в сечении, и определяется, как отношение величины внутренней силы к площади сечения.
Напряжение является величиной векторной.

Вектор напряжения можно разложить на две составляющие (рис. 3) – одну вдоль оси сечения, вторую – в плоскости сечения (перпендикулярно оси). Эти составляющие носят название нормальное напряжение (обозначается σ) и касательное напряжение (обозначается τ).
напряжение в сечении бруса Поскольку нормальные и касательные напряжения расположены под прямым углом друг к другу, модуль полного напряжения p можно определить по теореме Пифагора:

р2 = σ2 + τ2

Единица измерения напряжения – паскаль (Па).
1 Па = Н / м2. Поскольку эта единица очень мала, в расчетах часто применяют более крупную кратную единицу – мегапаскаль (МПа), который равен миллиону паскалей (106 Па).

Объяснить сущность напряжения можно на таком простом примере.
В соответствии с гипотезой об отсутствии первоначальных внутренних усилий, считается, что когда к телу не приложены внешние нагрузки его частицы не взаимодействуют друг с другом, т. е. абсолютно равнодушны к "соседкам" справа, слева и т. п. Но стоит приложить к телу внешнюю нагрузку, его частицы начинают лихорадочно цепляться друг за друга, пытаясь удержаться в "кучке". Если нагрузка растягивает тело, его частицы держатся друг за дружку, не давая разорвать тело, если нагрузка сжимающая - частицы тела стараются удержать "соседок" на прежнем расстоянии.
Совокупность всех этих усилий внутренних частиц, противостоящих внешним раздражителям-нагрузкам, и является напряжением.
Задачи сопромата чаще всего сводятся к тому, чтобы определить предельные величины нагрузок, способных разорвать связи между частицами, из которых состоит тело или, по известным предельным напряжениям определить, какие нагрузки способно выдержать тело не разрушаясь, не деформируясь и т. д.

Нетрудно заметить, что напряжение измеряется в тех же единицах, что и давление, поэтому можно провести некоторую аналогию между этими физическими понятиями. Принципиальная разница заключается в том, что давление - внешний силовой фактор (т. е. воздействующий на тело или его части извне), а напряжение - внутренний силовой фактор, характеризующий степень взаимодействия (взаимосвязи) частиц тела между собой.

***

Материалы раздела "Сопротивление материалов":




Правильные ответы на вопросы Теста № 7
№ вопроса
1
2
3
4
5
6
7
8
9
10
Правильный вариант ответа
3
2
3
2
2
3
1
2
1
2