Техническая механика





Динамика



Основные понятия и аксиомы динамики

Динамика есть часть теоретической механики, изучающая механическое движение тел в зависимости от сил, влияющих на это движение.

Основы динамики заложил итальянский ученый Галилео Галилей (1564-1642), который опроверг существовавшее в науке со времен Аристотеля (IV в. до н.э.) заблуждение о том, что из двух тел, падающих на Землю, более тяжелое движется быстрее. Галилей установил, что причиной изменения скорости тела является сила, т. е. любое ускорение или замедление вызывается силовым воздействием.
законы Ньютона для динамики На основе выводов Г. Галилея англичанин И. Ньютон сформулировал основные аксиомы (законы) движения, ставшие фундаментом, на который сотни лет опирается классическая физика, в том числе и современная.

Динамика основывается на ряде положений, которые являются аксиомами и называются законами динамики.
Прежде чем перейти к рассмотрению этих законов, необходимо раскрыть сущность понятий материальной точки и изолированной материальной точки.
Под материальной точкой подразумевают некое тело, имеющее определенную массу (т. е. содержащее некоторое количество материи), но не имеющее линейных размеров (бесконечно малый объем пространства).
Изолированной считается материальная точка, на которую не оказывают действие другие материальные точки.
В реальном мире изолированных материальных точек, как и изолированных тел, не существует, это понятие является условным.

***

Первый закон Ньютона (первый закон динамики)

Первый закон динамики, называемый аксиомой инерции, формулируется в применении к материальной точке так: изолированная материальная точка либо находится в покое, либо движется прямолинейно и равномерно.

В кинематике было установлено, что прямолинейное равномерное движение является единственным видом движения, при котором ускорение равно нулю, поэтому аксиому инерции можно сформулировать следующим образом: ускорение изолированной материальной точки равно нулю.

Итак, изолированная от влияния окружающих тел материальная точка не может сама себе сообщить ускорение. Это свойство тел называют инерцией или инертностью, т. е. инертность (инерция) – свойство тел сохранять скорость по модулю и направлению (в т. ч. и покой – состояние, при котором скорость равна нулю). Изменить скорость, т. е. сообщить материальной точке ускорение способна только приложенная к ней сила.

***

Второй закон Ньютона (второй закон динамики)

Зависимость между силой и сообщаемым ею ускорением устанавливает второй закон Ньютона, который гласит, что ускорение, сообщаемое материальной точке силой, имеет направление силы и пропорционально ее модулю.

Если сила F1 сообщает материальной точке ускорение a1, а сила F2 сообщает этой же точке ускорение a2, то на основании второго закона Ньютона можно записать:

F1/F2 = a1/a2   или   F1/a1 = F2/a2.

Следовательно, для данной материальной точки отношение любой силы к вызываемому ею ускорению есть величина постоянная. Эту величину (отношение силы к ускорению) называют массой материальной точки, и обозначают ее m:

F/a = m = const.

На основании этого равенства можно сделать выводы:
- две материальные точки, имеющие одинаковые массы, получат от одной и той же силы одинаковые ускорения;
- чем больше масса точки, тем большую силу необходимо приложить, чтобы придать данной точке требуемое ускорение
.

***



Что такое масса тела

Масса – одна из основных характеристик любого материального объекта, определяющая его инертные и гравитационные свойства. Ньютон называл массой количество материи, заключенной в теле, считая массу каждого тела величиной постоянной.
Современное представление о мире, после открытий, совершенных А. Эйнштейном, опровергает этот вывод И. Ньютона – масса не является постоянной величиной для тела, она зависит от скорости, с которой это тело движется. Так, например, наблюдения за движением заряженных частиц в ускорителях показали, что инертность частицы (т. е. способность сохранять свою скорость) возрастает с увеличением ее скорости.

Теория относительности устанавливает следующую зависимость между массой тела, находящегося в покое, и массой движущегося тела:

m = m0/√(1 – v2/c2),

где m – масса движущегося тела, m0 – масса покоящегося тела (масса покоя), v = скорость движения тела, c – скорость света.

Из этой формулы видно, что чем больше скорость движения тела, тем больше его масса и, следовательно, тем труднее сообщить ему дальнейшее ускорение. При скоростях близких к скорости света масса тела стремится к бесконечности, и для дальнейшего ускорения такого тела требуется сила бесконечной величины.
Очевидно, что материальное тело не может двигаться со скоростью света, поскольку не существует реальная сила, способная ускорить его до такого состояния.

На основании теории относительности современная наука дает массе такое определение: масса есть мера инертности тела.
Однако заметное изменение массы (инертности) тела наблюдается лишь при очень больших скоростях, близких к скорости света, поэтому в классической физике массу принимают величиной постоянной, при этом погрешности, возникающие в расчетах, являются ничтожно малыми.

Второй закон Ньютона выражается равенством:

F = ma,

которое называется основным уравнением динамики и читается так: сила есть вектор, равный произведению массы точки на ее ускорение.
Основное уравнение динамики является уравнением движения материальной точки в векторной форме.

Ускорение свободного падения

Опытным путем установлено, что под действием притяжения Земли в вакууме тела падают с одинаковым ускорением, которое называется ускорением свободного падения.

Следует отметить, что это явление будет верным для конкретного географического места на поверхности планеты или над ее поверхностью – ускорение свободного падения не является постоянной величиной и зависит, в частности, от расстояния между центром тяжести тела и центром тяжести нашей планеты, а также от существования центробежной силы инерции, вызываемой вращением Земли.
Так, на полюсах ускорение свободного падения g ≈ 9,83 м/с2, а на экваторе g ≈ 9,78 м/с2. Но в приближенных расчетах принимают среднее значение, равное примерно g ≈ 9,81 м/с2, при этом погрешности результатов незначительны.

Итак, сила тяжести тела равна его массе, умноженной на ускорение свободного падения. Если сила тяжести одного тела G1 = m1/g, а второго тела – G2 = m2/g, то

G1/G2 = (m1g)/(m2g) = m1/m2,

т. е. силы тяжести тел пропорциональны их массам, что позволяет сравнивать массы различных тел путем взвешивания (сравнивания их сил тяжести при помощи весов).

Из второго закона Ньютона следует, что под действием постоянной силы находившаяся в покое свободная материальная точка движется прямолинейно равнопеременно (с постоянным ускорением).

Движение под действием постоянной силы может быть и прямолинейным и криволинейным (в последнем случае материальная точка имеет начальную скорость, вектор которой не совпадает с вектором силы). Пример движения под действием постоянной силы – свободное падение тел.

***

Третий закон Ньютона

К основным законам динамики относится и рассмотренная в Статике аксиома взаимодействия, или третий закон Ньютона.
Применительно к материальной точке закон формулируется так: силы взаимодействия двух материальных точек по модулю равны между собой и направлены в противоположные стороны (действие равно противодействию).

На основании этого закона можно сделать вывод, что сила, как мера взаимодействия между телами, не может проявляться без пары, т. е. если возникает какое-либо силовое воздействие, то существует и "двойник" этого силового воздействия, равный по модулю и противоположный по вектору.

***

Дифференциальные уравнения движения материальной точки




Правильные ответы на тестовые вопросы по разделу "Динамика":
Тест №1     2-3-2-1-1
Тест №2     4-2-4-3-1
Тест №3     3-1-1-2-4
Тест №4     4-2-1-2-3
Тест №5     1-1-4-3-2
Тест №6     1-3-3-2-4
Тест №7     2-2-4-1-3